Potential for calibration of geostationary meteorological satellite imagers using the Moon

, , and
Edited by:
Butler J.J.
DOI: 10.1117/12.620097



Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data that contains the Moon can be used to develop response histories for these instruments, regardless of their current operational status.

Additional Publication Details

Publication type:
Conference Paper
Publication Subtype:
Conference Paper
Potential for calibration of geostationary meteorological satellite imagers using the Moon
Year Published:
Larger Work Title:
Proceedings of SPIE - The International Society for Optical Engineering
First page:
Last page:
Conference Title:
Earth Observing Systems X
Conference Location:
San Diego, CA
Conference Date:
31 July 2005 through 2 August 2005