Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault

Tectonophysics
By: , and 

Links

Abstract

The question of whether or not the Altyn Tagh fault is a large-scale extrusion boundary is critical for understanding the role of lateral extrusion in accommodating the Indo-Asian convergence and in building the Tibetan Plateau. Oligocene conglomerate clasts in the eastern Xorkol basin are low-grade slate, phyllite, sandstone, dacite and carbonate, and associated paleocurrent indicators evince sediment derivation from the opposing side of the Altyn Tagh fault. Matching these clasts with similar basement rocks in the North Qilian and Tuolainanshan terranes requires post-Oligocene left-lateral offset of 380 ?? 60 km on the eastern segment of the Altyn Tagh fault, suggesting large-scale extrusion along the fault in the Cenozoic (Yue, Y.J., Ritts, B.D., Graham, S.A., 2001b. Initiation and long-term slip history of the Altyn Tagh fault. International Geological Review 43, 1087-1094.). In order to further define this piercing point, the detrital zircon pattern of Oligocene sandstone from the Xorkol basin and the zircon ages of basement on the southern side of the fault were established by ion microprobe dating. Characterized by strong peaks between 850 and 950 Ma and the absence of Paleozoic and Mesozoic ages, the detrital zircon age pattern of the Oligocene sandstone matches the age distribution of zircon-bearing rocks of the Tuolainanshan terrane. This match requires 360 ?? 40 km of post-Oligocene left-lateral displacement on the eastern segment of the Altyn Tagh fault, supporting as well as refining the previously reported lithology-based cross-fault match. At least one of the following three extrusion scenarios must have existed to accommodate this large offset: (1) northeastward extrusion along the Altyn Tagh-Alxa-East Mongolia fault, (2) eastward extrusion along the Altyn Tagh-North Qilian-Haiyuan fault, and (3) northeastward extrusion of northern Tibet as a Himalaya-scale thrust sheet along the North Qilian-Haiyuan fault. We prefer the first scenario inasmuch as rapidly growing evidence for Cenozoic strike-slip activity on the Alxa-East Mongolia fault and mid-Miocene exhumation of northern Tibet supports it. ?? 2005 Elsevier B.V. All rights reserved.
Publication type Article
Publication Subtype Journal Article
Title Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault
Series title Tectonophysics
DOI 10.1016/j.tecto.2005.05.023
Volume 406
Issue 3-4
Year Published 2005
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Tectonophysics
First page 165
Last page 178
Google Analytic Metrics Metrics page
Additional publication details