thumbnail

Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan

Applied and Environmental Microbiology

By:
, , , , ,
DOI: 10.1128/AEM.00131-06

Links

Abstract

Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 ?? 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 ?? 10 2 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan
Series title:
Applied and Environmental Microbiology
DOI:
10.1128/AEM.00131-06
Volume
72
Issue:
7
Year Published:
2006
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Applied and Environmental Microbiology
First page:
4545
Last page:
4553
Number of Pages:
9