thumbnail

Implications of ground water chemistry and flow patterns for earthquake studies

Ground Water

By:
, , , , and
DOI: 10.1111/j.1745-6584.2005.0037.x

Links

Abstract

Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for ??18O, ??D, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57??C to 160??C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas. Copyright ?? 2005 National Ground Water Association.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Implications of ground water chemistry and flow patterns for earthquake studies
Series title:
Ground Water
DOI:
10.1111/j.1745-6584.2005.0037.x
Volume
43
Issue:
4
Year Published:
2005
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Ground Water
First page:
478
Last page:
484
Number of Pages:
7