thumbnail

Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

Space Science Reviews

By:
, , , , , , , , , and
DOI: 10.1007/s11214-007-9155-9

Links

Abstract

MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet's nucleus. ?? 2007 Springer Science+Business Media, Inc.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1
Series title:
Space Science Reviews
DOI:
10.1007/s11214-007-9155-9
Volume
129
Issue:
4
Year Published:
2007
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Space Science Reviews
First page:
309
Last page:
326
Number of Pages:
18