thumbnail

D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity

Organic Geochemistry

By:
, ,
DOI: 10.1016/j.orggeochem.2005.10.006

Links

Abstract

Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity
Series title:
Organic Geochemistry
DOI:
10.1016/j.orggeochem.2005.10.006
Volume
37
Issue:
3
Year Published:
2006
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
342
Last page:
353
Number of Pages:
12