thumbnail

The vertical hydraulic conductivity of an aquitard at two spatial scales

Ground Water

By:
, ,
DOI: 10.1111/j.1745-6584.2005.00125.x

Links

Abstract

Aquitards protect underlying aquifers from contaminants and limit recharge to those aquifers. Understanding the mechanisms and quantity of ground water flow across aquitards to underlying aquifers is essential for ground water planning and assessment. We present results of laboratory testing for shale hydraulic conductivities, a methodology for determining the vertical hydraulic conductivity (Kv) of aquitards at regional scales and demonstrate the importance of discrete flow pathways across aquitards. A regional shale aquitard in southeastern Wisconsin, the Maquoketa Formation, was studied to define the role that an aquitard plays in a regional ground water flow system. Calibration of a regional ground water flow model for southeastern Wisconsin using both predevelopment steady-state and transient targets suggested that the regional Kv of the Maquoketa Formation is 1.8 ?? 10 -11 m/s. The core-scale measurements of the Kv of the Maquoketa Formation range from 1.8 ?? 10-14 to 4.1 ?? 10-12 m/s. Flow through some additional pathways in the shale, potential fractures or open boreholes, can explain the apparent increase of the regional-scale Kv. Based on well logs, erosional windows or high-conductivity zones seem unlikely pathways. Fractures cutting through the entire thickness of the shale spaced 5 km apart with an aperture of 50 microns could provide enough flow across the aquitard to match that provided by an equivalent bulk Kv of 1.8 ?? 10-11 m/s. In a similar fashion, only 50 wells of 0.1 m radius open to aquifers above and below the shale and evenly spaced 10 km apart across southeastern Wisconsin can match the model Kv. Copyright ?? 2005 National Ground Water Association.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
The vertical hydraulic conductivity of an aquitard at two spatial scales
Series title:
Ground Water
DOI:
10.1111/j.1745-6584.2005.00125.x
Volume
44
Issue:
2
Year Published:
2006
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Ground Water
First page:
201
Last page:
211
Number of Pages:
11