A comparison of protocols and observer precision for measuring physical stream attributes

Journal of the American Water Resources Association
By: , and 

Links

Abstract

Stream monitoring programs commonly measure physical attributes to assess the effect of land management on stream habitat. Variability associated with the measurement of these attributes has been linked to a number of factors, but few studies have evaluated variability due to differences in protocols. We compared six protocols, five used by the U.S. Department of Agriculture Forest Service and one by the U.S. Environmental Protection Agency, on six streams in Oregon and Idaho to determine whether differences in protocol affect values for 10 physical stream attributes. Results from Oregon and Idaho were combined for groups participating in both states, with significant differences in attribute means for 9 out of the 10 stream attributes. Significant differences occurred in 5 of 10 in Idaho, and 10 of 10 in Oregon. Coefficients of variation, signal-to-noise ratio, and root mean square error were used to evaluate measurement precision. There were differences among protocols for all attributes when states were analyzed separately and as a combined dataset. Measurement differences were influenced by choice of instruments, measurement method, measurement location, attribute definitions, and training approach. Comparison of data gathered by observers using different protocols will be difficult unless a core set of protocols for commonly measured stream attributes can be standardized among monitoring programs.

Study Area

Publication type Article
Publication Subtype Journal Article
Title A comparison of protocols and observer precision for measuring physical stream attributes
Series title Journal of the American Water Resources Association
DOI 10.1111/j.1752-1688.2007.00074.x
Volume 43
Issue 4
Year Published 2007
Language English
Publisher American Water Resources Association
Contributing office(s) Northern Rocky Mountain Science Center
Description 15 p.
Larger Work Type Article
First page 923
Last page 937
Country United States
State Idaho, Oregon
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details