thumbnail

Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.

Arctic, Antarctic, and Alpine Research

By:
, , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

We derived and implemented two spatial models of May snow water equivalent (SWE) at Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis that vegetation structure is a control on snow redistribution at the alpine treeline ecotone (ATE). The statistical models were derived using stepwise and "best" subsets regression techniques. The first model was derived from field measurements of SWE, topography, and vegetation taken at 27 sample points. The second model was derived using GIS-based measures of topography and vegetation. Both the field- (R2 = 0.93) and GIS-based models (R2 = 0.69) of May SWE included the following variables: site type (based on vegetation), elevation, maximum slope, and general slope aspect. Site type was identified as the most important predictor of SWE in both models, accounting for 74.0% and 29.5% of the variation, respectively. The GIS-based model was applied to create a predictive map of SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where vegetation is scarce. The GIS model failed in large depressions, including ephemeral stream channels. The models supported the hypothesis that upright vegetation has a positive effect on accumulation of SWE above and beyond the effects of topography. Vegetation, therefore, creates a positive feedback in which it modifies its environment and could affect the ability of additional vegetation to become established. ?? 2005 Regents of the University of Colorado.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.
Series title:
Arctic, Antarctic, and Alpine Research
Volume
37
Issue:
2
Year Published:
2005
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Arctic, Antarctic, and Alpine Research
First page:
197
Last page:
205
Number of Pages:
9