thumbnail

Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA

Environmental Science and Technology

By:
, , , ,
DOI: 10.1021/es202875e

Links

Abstract

Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R 2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson's r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams. ?? This article not subject to U.S. Copyright. Published 2011 by the American Chemical Society.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA
Series title:
Environmental Science and Technology
DOI:
10.1021/es202875e
Volume
46
Issue:
2
Year Published:
2012
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Environmental Science and Technology
First page:
901
Last page:
908
Number of Pages:
8