thumbnail

The role of labile sulfur compounds in thermochemical sulfate reduction

Geochimica et Cosmochimica Acta

By:
, , , , and
DOI: 10.1016/j.gca.2008.03.022

Links

Abstract

The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of organic LSC creates free-radicals that in turn might initiate a radical chain-reaction that creates more reactive species. Experiments involving radical initiators, such as diethyldisulfide and benzyldisulfide, did not show an increase in reactivity compared to 1-pentanethiol. Therefore, we conclude that none of these can sufficiently explain our observations of the initial stages of TSR; they may, however, be important in the later stages. In order to gain greater insight into the potential mechanism for the observed reactivity of these organic sulfur compounds during TSR, we applied density functional theory-based molecular modeling techniques to our system. The results of these calculations indicate that 1-pentanethiol or its thermal degradation products may directly react with sulfate and reduce the activation energy required to rupture the first S-O bond through the formation of a sulfate ester. This study demonstrates the importance of labile sulfur compounds in reducing the onset timing and temperature of TSR. It is therefore essential that labile sulfur concentrations are taken into consideration when trying to make accurate predictions of TSR kinetics and the potential for H2S accumulation in petroleum reservoirs. ?? 2008.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
The role of labile sulfur compounds in thermochemical sulfate reduction
Series title:
Geochimica et Cosmochimica Acta
DOI:
10.1016/j.gca.2008.03.022
Volume
72
Issue:
12
Year Published:
2008
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Geochimica et Cosmochimica Acta
First page:
2960
Last page:
2972