thumbnail

Thermometers and thermobarometers in granitic systems

Reviews in Mineralogy and Geochemistry

By:
, , ,
Edited by:
Putirka K.D.Tepley III F.J.
DOI: 10.2138/rmg.2008.69.4

Links

Abstract

The ability to determine the thermal and barometric history during crystallization and emplacement of granitic plutons has been enhanced by several new calibrations applicable to granitic mineral assemblages. Other existing calibrations for granitic plutons have continued to be popular and fairly robust. Recent advances include the trace element thermometers Ti-in-quartz, Ti-in-zircon, and Zr-in-sphene (titanite), which need to be further evaluated on the roles of reduced activities due to lack of a saturating phase, the effect of pressure dependence (particularly for the Ti-in-zircon thermometer), and how resistive these thermometers are to subsolidus reequilibration. As zircon and sphene are also hosts to radiogenic isotopes, these minerals potentially also provide new insights into the temperature - time history of magmas. When used in conjunction with pressure-sensitive mineral equilibria in the same rocks, a complete assessment of the P-T-t (pressure-temperature-time) path is possible given that the mineralogy of plutons can reflect crystallization over a range of pressure and temperature during ascent and emplacement and that many intrusions are now seen as forming over several millions of years during the protracted history of batholith construction. Accessory mineral saturation thermometers, such as those for zircon, apatite, and allanite, provide a different and powerful perspective, specifically that of the temperature of the onset of crystallization of these minerals, which can allow an estimate of the range of temperature between the liquidus and solidus of a given pluton. In assessment of the depth of crystallization and emplacement of granitic plutons, the Al-in-hornblende remains popular for metaluminous granites when appropriately corrected for temperature. For peraluminous granites, potential new calibrations exist for the assemblages bearing garnet, biotite, plagioclase, muscovite, and quartz. Other thermometers, based on oxygen abundance, and including Fe-Ti oxides, pyroxene, fayalitic olivine, quartz, sphene, and/or biotite, some of which have been recently revised, can provide additional information on temperature and oxygen fugacity. Oxygen fugacity can range over several orders of magnitude in different magmatic systems and can have profound influence on the mineralogy and mineral compositions in granitic magmas. It also forms the foundation of the popular magnetite- versus ilmenite-series granite classification. Copyright ?? Mineralogical Society of America.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Thermometers and thermobarometers in granitic systems
Series title:
Reviews in Mineralogy and Geochemistry
ISBN:
9780939950836
DOI:
10.2138/rmg.2008.69.4
Volume
69
Year Published:
2008
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Reviews in Mineralogy and Geochemistry
First page:
121
Last page:
142
Number of Pages:
22