thumbnail

Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

Journal of Geophysical Research G: Biogeosciences

By:
, , , , , , , , , , , and
DOI: 10.1029/2008JG000841

Links

Abstract

Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postbura measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in modeldata comparison, the model demonstrates substantial ability in simulating the dynamics of ??vapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity. Copyright 2009 by the American Geophysical Union.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance
Series title:
Journal of Geophysical Research G: Biogeosciences
DOI:
10.1029/2008JG000841
Volume
114
Issue:
2
Year Published:
2009
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Geophysical Research G: Biogeosciences