thumbnail

History of plains resurfacing in the Scandia region of Mars

Planetary and Space Science

By:
, , , ,
DOI: 10.1016/j.pss.2010.11.004

Links

Abstract

We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below −4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating related to Alba Mons volcanism, which acted upon a sequence of lavas, outflow channel sediments, and polar ice deposits centered within the Scandia region. These volatile-enriched sediments may have been in a state of partial volatile melt, resulting in the mobilization of deeply buried ancient materials and their ascent and emergence as sediment and mud breccia diapirs to form tholi features. Similar subsurface instabilities proximal to Alba Mons may have led to surface disruption, as suggested by local and regional scarps, mesas, moats, and knob fields.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
History of plains resurfacing in the Scandia region of Mars
Series title:
Planetary and Space Science
DOI:
10.1016/j.pss.2010.11.004
Volume
59
Issue:
11-12
Year Published:
2011
Language:
English
Publisher:
Elsevier
Contributing office(s):
Astrogeology Science Center
Description:
15 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
1128
Last page:
1142
Number of Pages:
15
Other Geospatial:
Mars