Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

Applied Geochemistry

, , , , , and
DOI: 10.1016/j.apgeochem.2011.10.006



Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2 emissions due to the loss of >99% of the original CO 2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO 2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO 2 flux and heat flow surveys indicate that despite 20a of production the variability in location, spatial extent and magnitude of CO 2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60gm -2d -1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO 2 diffuses through porous media of the soil zone. For high-flux sites (>300gm -2d -1), the ?? 13CO 2 signature (-7.4??0.3??? OHW and -6.5??0.6??? OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO 2 source for each respective upflow. Flux thresholds of <30gm -2d -1 for purely diffusive gas transport, between 30 and 300gm -2d -1 for combined diffusive-advective transport, and ???300gm -2d -1 for purely advective gas transport at Ohaaki were assigned. ?? 13CO 2 values and cumulative probability plots of CO 2 flux data both identified a threshold of ~15gm -2d -1 by which background (atmospheric and soil respired) CO 2 may be differentiated from hydrothermal CO 2. ?? 2011 Elsevier Ltd.

Additional Publication Details

Publication type:
Publication Subtype:
Journal Article
Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand
Series title:
Applied Geochemistry
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Applied Geochemistry
First page:
Last page:
Number of Pages:
Online Only (Y/N):
Additional Online Files(Y/N):