Petrographic observations on the Exmore breccia, ICDP-USGS drilling at Eyreville, Chesapeake Bay impact structure, USA

Special Paper of the Geological Society of America
By: , and 

Links

Abstract

The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B drill cores sampled crater fill in the region of the crater moat, ??9 km to the NE of the center of the Chesapeake Bay impact structure, Virginia, USA. They provide a 953 m section (444-1397 m depth) of sedimentary clast breccia and intercalated sedimentary and crystalline megablocks knownas Exmore beds, deposited on top of the impactite sequence between 1397 and 1551 m depth. We petrographically investigated the sandy-clayey groundmass-dominated breccia, which resembles a diamictite ("Exmore breccia"), and which, in its lower parts, carries sedimentary and crystalline blocks. The entire breccia interval is characterizedby the presence of glauconite and bioclastic carbonate, which distinguishes the Exmore breccia from other sandy facies above and below in the stratigraphy. The sediment-clast breccia exhibits strong heterogeneity from sample to sample with respect to groundmass nature, e.g., clay versus sand content, as well as clast content, in general, and shocked clast content, in particular. There is a consistently signifi cantly larger macroscopic sedimentary to crystalline clast content. On the microscopic scale, the intersample sediment to crystalline clast ratios are quite variable. A very small component of shocked material, in the form of shock-deformed quartz, and to an even lesser degree feldspar, and somewhat more abundant but still relatively scarce shardshaped,altered melt particles, is present throughout the section. However, between ??458 and 469 m, and between 514 and 527 m depths, the abundance of such melt particlesis notably enhanced. These sections are also chemically distinct and relatively more mafic than the other parts of the Exmore breccia. It appears that from the time of deposition of the 527 m material, calming of the ocean occurred over the crater area as a result of abatement of resurge activity, so that ejecta from the plume abovethe crater could accumulate within the crater area to a larger degree. Deposition ofejecta fallout from the collapsing ejecta plume was terminated by the time of deposition of the 458 m material. This raises questions about the positioning of the exact upper contact of Exmore breccia to post-Exmore sediment (Chickahominy Formation), which is currently placed at 444 m depth and which possibly should be revisedto 458 m depth. Based on a signifi cant record of granite-derived material with shocked minerals, the shocked debris component seems to be largely derived from crystalline target rocks. This provides further evidence that the basement-derived material of the basal section of the Eyreville drill cores, which is essentially unshocked, is likely of an allochthonous nature and that the drilling did not intersect the actual crater floor. 76??W. ?? 2009 Geological Society of America.
Publication type Article
Publication Subtype Journal Article
Title Petrographic observations on the Exmore breccia, ICDP-USGS drilling at Eyreville, Chesapeake Bay impact structure, USA
Series title Special Paper of the Geological Society of America
DOI 10.1130/2009.2458(29)
Issue 458
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Special Paper of the Geological Society of America
First page 655
Last page 698
Google Analytic Metrics Metrics page
Additional publication details