Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

, ,
DOI: 10.1061/40569(2001)103



Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.

Additional Publication Details

Publication type:
Conference Paper
Publication Subtype:
Conference Paper
Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model
0784405697; 9780784405697
Year Published:
Larger Work Title:
Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges - Proceedings of the World Water and Environmental Resources Congress 2001
Conference Title:
World Water and Environmental Resources Congress 2001
Conference Location:
Orlando, FL
Conference Date:
20 May 2001 through 24 May 2001