thumbnail

Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media

Water Research

By:
, , , , , ,
DOI: 10.1016/j.watres.2010.06.015

Links

Abstract

In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-??m microspheres, almost all (>99%) predictably would be recovered within ~4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed for the red, metal-oxide rich soil from Oahu. In contrast, colloidal attachment in the organic-rich, volcanic ash soil was relatively insensitive to changes in pH in spite of the high iron content. Given the fundamental differences in transport behavior of oocyst-sized colloids within the two volcanic soils of similar origin, agricultural practices modified to lessen C. parvum contamination of ground or surface water would necessitate taking the individual soil properties into account. ?? 2010.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media
Series title:
Water Research
DOI:
10.1016/j.watres.2010.06.015
Volume
44
Issue:
18
Year Published:
2010
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
5334
Last page:
5344
Number of Pages:
11