thumbnail

The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

Environmental Monitoring and Assessment

By:
, , ,
DOI: 10.1007/s10661-008-0372-9

Links

Abstract

The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location. ?? The Author(s) 2008.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions
Series title:
Environmental Monitoring and Assessment
DOI:
10.1007/s10661-008-0372-9
Volume
154
Issue:
1-4
Year Published:
2009
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
1
Last page:
14
Number of Pages:
14