thumbnail

Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers

Journal of Hydrometeorology

By:
, , , , , ,
DOI: 10.1175/2010JHM1232.1

Links

Abstract

Extreme precipitation events, and the quantitative precipitation forecasts (QPFs) associated with them, are examined. The study uses data from the Hydrometeorology Testbed (HMT), which conducted its first field study in California during the 2005/06 cool season. National Weather Service River Forecast Center (NWS RFC) gridded QPFs for 24-h periods at 24-h (day 1), 48-h (day 2), and 72-h (day 3) forecast lead times plus 24-h quantitative precipitation estimates (QPEs) fromsites in California (CA) and Oregon-Washington (OR-WA) are used. During the 172-day period studied, some sites received more than 254 cm (100 in.) of precipitation. The winter season produced many extreme precipitation events, including 90 instances when a site received more than 7.6 cm (3.0 in.) of precipitation in 24 h (i.e., an "event") and 17 events that exceeded 12.7 cm (24 h)-1 [5.0 in. (24 h)-1]. For the 90 extreme events f.7.6 cm (24 h)-1 [3.0 in. (24 h)-1]g, almost 90% of all the 270 QPFs (days 1-3) were biased low, increasingly so with greater lead time. Of the 17 observed events exceeding 12.7 cm (24 h)-1 [5.0 in. (24 h)-1], only 1 of those events was predicted to be that extreme. Almost all of the extreme events correlated with the presence of atmospheric river conditions. Total seasonal QPF biases for all events fi.e., $0.025 cm (24 h)-1 [0.01 in. (24 h)-1]g were sensitive to local geography and were generally biased low in the California-Nevada River Forecast Center (CNRFC) region and high in the Northwest River Forecast Center(NWRFC) domain. The low bias in CA QPFs improved with shorter forecast lead time and worsened for extreme events. Differences were also noted between the CNRFC and NWRFC in terms of QPF and the frequency of extreme events. A key finding from this study is that there were more precipitation events .7.6 cm (24 h)-1 [3.0 in. (24 h)21] in CA than in OR-WA. Examination of 422 Cooperative Observer Program (COOP) sites in the NWRFC domain and 400 in the CNRFC domain found that the thresholds for the top 1% and top 0.1%of precipitation events were 7.6 cm (24 h)21 [3.0 in. (24 h)-1] and 14.2 cm (24 h)-1 [5.6 in. (24 h)-1] or greater for the CNRFC and only 5.1 cm (24 h)-1 [2.0 in. (24 h)-1] and 9.4 cm (24 h)-1 [3.7 in. (24 h)-1] for the NWRFC, respectively. Similar analyses for all NWS RFCs showed that the threshold for the top 1% of events varies from;3.8 cm (24 h)-1 [1.5 in. (24 h)-1] in the Colorado Basin River Forecast Center (CBRFC) to~5.1 cm (24 h)-1 [3.0 in. (24 h)-1] in the northern tier of RFCs and;7.6 cm (24 h)-1 [3.0 in. (24 h)-1] in both the southern tier and the CNRFC. It is recommended that NWS QPF performance in the future be assessed for extreme events using these thresholds. ?? 2010 American Meteorological Society.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers
Series title:
Journal of Hydrometeorology
DOI:
10.1175/2010JHM1232.1
Volume
11
Issue:
6
Year Published:
2010
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Hydrometeorology
First page:
1286
Last page:
1304
Number of Pages:
19