Processes affecting ??34S and ??18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA

Chemical Geology

, ,
DOI: 10.1016/j.chemgeo.2009.05.009



The ??34S and ??18O values for dissolved sulfate in groundwater are commonly used in aquifer studies to identify sulfate reservoirs and describe biogeochemical processes. The utility of these data, however, often is compromised by mixing of sulfate sources within reservoirs and isotope fractionation during sulfur redox cycling. Our study shows that, after all potential sulfate sources are identified and isotopically characterized, the ??34SSO4 and ??18OSO4 values differentiate processes such as sulfate-source mixing, sulfide oxidation, barite dissolution, and organosulfur decomposition. During bacterial reduction of sulfate, the values reflect kinetic sulfur isotope fractionation and exchange of oxygen isotopes between sulfate and water. Detailed analysis of the chemistry (Cl and SO4 concentrations) and isotopic composition (??2HH2O and ??18OH2O) of groundwater in an alluvial aquifer in Central Oklahoma, USA allowed the identification of five distinct end members that supply water to the aquifer (regional groundwater flowing into the study area, river water, leachate from a closed landfill that operated within the site, rain, and surface runoff). The ??34SSO4 and ??18OSO4 values in each end member differentiated three sources of sulfate: sulfate dissolved from Early to Late Permian rocks within the drainage basin (??34SSO4 = 8-12??? and ??18OSO4 = 10???), iron sulfides oxidized by molecular oxygen during low water-table levels (??34SSO4 = - 16??? and ??18OSO4 = 10???), and organosulfur compounds (predominately ester sulfates) from decomposition of vegetation on the surface and from landfill trash buried in the alluvium (??34SSO4 = 8??? and ??18OSO4 = 6???). During bacterial reduction of these sulfate sources, similar isotope fractionation processes are recorded in the parallel trends of increasing ??34SSO4 and ??18OSO4 values. When extensive reduction occurs, the kinetic sulfur isotope fractionation (estimated by ??H2S-SO4 = - 23???) results in the steady increase of ??34SSO4 values to greater than 70???. Equilibrium isotope fractionation during exchange of sulfate oxygen and water oxygen, a process not commonly observed in field-based studies, is documented in ??18OSO4 values asymptotically approaching 21???, the value predicted for conditions at the study site (??SO4-H2O = 27???). These results show that recognition of all potential sulfate sources is a critical first step to resolving complexities in ??34SSO4 and ??18OSO4 data. The approach taken in this study can be used in other aquifer systems where the identification of multiple sulfate sources and sulfur redox cycling is important to understanding natural processes and anthropogenic influences.

Additional Publication Details

Publication type:
Publication Subtype:
Journal Article
Processes affecting ??34S and ??18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA
Series title:
Chemical Geology
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Chemical Geology
First page:
Last page:
Number of Pages: