Basanite-nephelinite suite from early Kilauea: Carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

Contributions to Mineralogy and Petrology
By: , and 

Links

Abstract

A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol 142:520-542, 2002). It may represent the melting products of a fertile domain in the ambient upper mantle impinged upon and perturbed by the sustained plume source that feeds later shield-stage magmatism. ?? US Government 2009.
Publication type Article
Publication Subtype Journal Article
Title Basanite-nephelinite suite from early Kilauea: Carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge
Series title Contributions to Mineralogy and Petrology
DOI 10.1007/s00410-009-0411-8
Volume 158
Issue 6
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Contributions to Mineralogy and Petrology
First page 803
Last page 829
Google Analytic Metrics Metrics page
Additional publication details