thumbnail

Identification, characterization and genetic mapping of TLR1 loci in rainbow trout (Oncorhynchus mykiss)

Fish and Shellfish Immunology

By:
, , , , , and
DOI: 10.1016/j.fsi.2010.02.002

Links

Abstract

Induction of innate immune pathways is critical for early anti-microbial defense but there is limited understanding of how teleosts recognize microbial molecules and activate these pathways. In mammals, Toll-like receptors (TLR) 1 and 2 form a heterodimer involved in recognizing peptidoglycans and lipoproteins of microbial origin. Herein, we identify and describe the rainbow trout (Oncorhynchus mykiss) TLR1 gene ortholog and its mRNA expression. Two TLR1 loci were identified from a rainbow trout bacterial artificial chromosome (BAC) library using DNA sequencing and genetic linkage analyses. Full length cDNA clone and direct sequencing of four BACs revealed an intact omTLR1 open reading frame (ORF) located on chromosome 14 and a second locus on chromosome 25 that contains a TLR1 pseudogene. The duplicated trout loci exhibit conserved synteny with other fish genomes that extends beyond the TLR1 gene sequences. The omTLR1 gene includes a single large coding exon similar to all other described TLR1 genes, but unlike other teleosts it also has a 5??? UTR exon and intron preceding the large coding exon. The omTLR1 ORF is predicted to encode an 808 amino-acid protein with 69% similarity to the Fugu TLR1 and a conserved pattern of predicted leucine-rich repeats (LRR). Phylogenetic analysis grouped omTLR1 with other fish TLR1 genes on a separate branch from the avian TLR1 and mammalian TLR1, 6 and 10. omTLR1 expression levels in rainbow trout anterior kidney leukocytes were not affected by the human TLR2/6 and TLR2/1 agonists diacylated lipoprotein (Pam2CSK4) and triacylated lipoprotein (Pam3CSK4). However, due to the lack of TLR6 and 10 genes in teleost genomes and up-regulation of TLR1 mRNA in response to LPS and bacterial infection in other fish species we hypothesize an important role for omTLR1 in anti-microbial immunity. Therefore, the identification of a TLR2 ortholog in rainbow trout and the development of assays to measure ligand binding and downstream signaling are critical for future elucidation of omTLR1 functions.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Identification, characterization and genetic mapping of TLR1 loci in rainbow trout (Oncorhynchus mykiss)
Series title:
Fish and Shellfish Immunology
DOI:
10.1016/j.fsi.2010.02.002
Volume
28
Issue:
5-6
Year Published:
2010
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Fish and Shellfish Immunology
First page:
918
Last page:
926