Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

Journal of Sedimentary Research

, , and
DOI: 10.2110/jsr.2010.085



Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of sediment nor were the bottom waters persistently anoxic. In addition, the presence of thin lags and sharp-based beds suggests that the seafloor was being episodically reworked during deposition. These fabrics indicate that conditions in the water columns and at the seafloors while these rocks were being deposited were very dynamic, and episodic fluxes of high concentrations of organic carbon to the seafloor, during phytoplankton blooms, likely enhanced preservation of organic carbon. Copyright ?? 2010, SEPM (Society for Sedimentary Geology).

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments
Series title:
Journal of Sedimentary Research
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Sedimentary Research
First page:
Last page: