thumbnail

Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau

Geochimica et Cosmochimica Acta

By:
, , , , , ,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time

Abstract

The chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar (~1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3-4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2-CH4-CO-H2O-H2 gas equilibrium reactions indicates equilibration temperatures from 170 °C to 310 °C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is ~170 °C whereas the MC is hotter, at 340 °C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 °C, is necessary to explain the range in fumarole gas chemistry.

Geospatial Extents

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau
Series title:
Geochimica et Cosmochimica Acta
Volume
89
Year Published:
2012
Language:
English
Publisher:
Elsevier
Publisher location:
Amsterdam, Netherlands
Contributing office(s):
Volcano Science Center
Description:
13 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
265
Last page:
278
Number of Pages:
13
Country:
United States
State:
Wyoming
Other Geospatial:
Yellowstone National Park