thumbnail

Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri Rivers, USA

Science of the Total Environment

By:
, , ,
DOI: 10.1016/j.scitotenv.2012.10.080

Links

Abstract

Mercury is a worldwide contaminant derived from natural and anthropogenic sources. River systems play a key role in the transport and fate of Hg because they drain widespread areas affected by aerial Hg deposition, transport Hg away from point sources, and are sites of Hg biogeochemical cycling and bioaccumulation. The Madison and Missouri Rivers provide a natural laboratory for studying the fate and transport of Hg contributed by geothermal discharge in Yellowstone National Park and from the atmosphere for a large drainage basin in Montana and Wyoming, United States of America (USA). Assessing Hg in these rivers also is important because they support fishery-based recreation and irrigated agriculture. During 2002 to 2006, Hg concentrations were measured in water, sediment, and fish from the main stem, 7 tributaries, and 6 lakes. Using these data, the geothermal Hg load to the Madison River and overall fate of Hg along 378 km of the Missouri River system were assessed. Geothermal Hg was the primary source of elevated total Hg concentrations in unfiltered water (6.2–31.2 ng/L), sediment (148–1100 ng/g), and brown and rainbow trout (0.12– 1.23 µg total Hg/g wet weight skinless filet) upstream from Hebgen Lake (the uppermost impoundment). Approximately 7.0 kg/y of geothermal Hg was discharged from the park via the Madison River, and an estimated 87% of that load was lost to sedimentation in and volatilization from Hebgen Lake. Consequently, Hg concentrations in water, sediment, and fish from main-stem sites downstream from Hebgen Lake were not elevated and were comparable to concentrations reported for other areas affected solely by atmospheric Hg deposition. Some Hg was sequestered in sediment in the downstream lakes. Bioaccumulation of Hg in fish along the river system was strongly correlated (r2=0.76–0.86) with unfiltered total and methyl Hg concentrations in water and total Hg in sediment.

Geospatial Extents

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri Rivers, USA
Series title:
Science of the Total Environment
DOI:
10.1016/j.scitotenv.2012.10.080
Volume
443
Year Published:
2013
Language:
English
Publisher:
Elsevier
Publisher location:
Amsterdam, Netherlands
Contributing office(s):
Montana Water Science Center
Description:
15 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Science of the Total Environment
First page:
40
Last page:
54
Country:
United States
State:
Montana;Wyoming