thumbnail

A universal approximation to grain size from images of non-cohesive sediment

Journal of Geophysical Research F: Earth Surface

By:
, ,
DOI: 10.1029/2009JF001477

Links

Abstract

The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a “universal approximation” because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
A universal approximation to grain size from images of non-cohesive sediment
Series title:
Journal of Geophysical Research F: Earth Surface
DOI:
10.1029/2009JF001477
Volume
115
Issue:
F2
Year Published:
2010
Language:
English
Publisher:
AGU
Publisher location:
Washington, D.C.
Contributing office(s):
Pacific Coastal and Marine Science Center
Description:
F02015
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Geophysical Research F: Earth Surface