Comparison of simulations of land-use specific water demand and irrigation water supply by MF-FMP and IWFM

Technical Information Record TIR-2
By: , and 

Links

Abstract

Two hydrologic models, MODFLOW with the Farm Process (MF-FMP) and the Integrated Water Flow Model (IWFM), are compared with respect to each model’s capabilities of simulating land-use hydrologic processes, surface-water routing, and groundwater flow. Of major concern among the land-use processes was the consumption of water through evaporation and transpiration by plants. The comparison of MF-FMP and IWFM was conducted and completed using a realistic hypothetical case study. Both models simulate the water demand for water-accounting units resulting from evapotranspiration and inefficiency losses and, for irrigated units, the supply from surface-water deliveries and groundwater pumpage. The MF-FMP simulates reductions in evapotranspiration owing to anoxia and wilting, and separately considers land-use-related evaporation and transpiration; IWFM simulates reductions in evapotranspiration related to the depletion of soil moisture. The models simulate inefficiency losses from precipitation and irrigation water applications to runoff and deep percolation differently. MF-FMP calculates the crop irrigation requirement and total farm delivery requirement, and then subtracts inefficiency losses from runoff and deep percolation. In IWFM, inefficiency losses to surface runoff from irrigation and precipitation are computed and subtracted from the total irrigation and precipitation before the crop irrigation requirement is estimated. Inefficiency losses in terms of deep percolation are computed simultaneously with the crop irrigation requirement. The seepage from streamflow routing also is computed differently and can affect certain hydrologic settings and magnitudes ofstreamflow infiltration. MF-FMP assumes steady-state conditions in the root zone; therefore, changes in soil moisture within the root zone are not calculated. IWFM simulates changes in the root zone in both irrigated and non-irrigated natural vegetation. Changes in soil moisture are more significant for non-irrigated natural vegetation areas than in the irrigated areas. Therefore, to facilitate the comparison of models, the changes in soil moisture are only simulated by IWFM for the natural vegetation areas, and soil-moisture parameters in irrigated regions in IWFM were specified at constant values . The IWFM total simulated changes in soil moisture that are related to natural vegetation areas vary from stress period to stress period but are small over the entire two-year period of simulation. In the hypothetical case study, IWFM simulates more evapotranspiration and return flows and less streamflow infiltration than MF-FMP. This causes more simulated surface-water diversions upstream and less simulated water available to downstream farms in IWFM compared to MF-FMP. The evapotranspiration simulated by the two models is well correlated even though the quantity is different. The different approaches used to simulate soil moisture, evapotranspiration, and inefficient losses yield different results for deep percolation and pumpage. In IWFM, deep percolation is a function of soil moisture; therefore, the constant soil-moisture requirement for irrigated regions, assumed for this comparison, results in a constant deep percolation rate. This led to poor correlation with the variable deep percolation rates simulated in MF-FMP, where the deep percolation rate, a fraction of inefficiency losses from precipitation and irrigation, is a function of quasi-steady state infiltration for each soil type and a function of groundwater head. Similarly, the larger simulated evapotranspiration in IWFM is mainly responsible for larger simulated groundwater pumpage demands and related lower groundwater levels in IWFM compared to MF-FMP. Because of the differences in features between MF-FMP and IWFM, the user may find that for certain hydrologic settings one model is better suited than the other. The performance of MF-FMP and IWFM in this particular hypothetical test case, with a fixed framework composed of common initial and boundary conditions and input parameter values, does not necessarily predict the performance of MF-FMP and IWFM in a real-world situation with variable framework and parameter values. These differences may affect the evaluation of policies, projects, or water-balance analysis for some hydrologic settings. Generally, both models are powerful tools that simulate a connected system of aquifer, stream networks, land surface, root zone, and runoff processes. MF-FMP simulated the hypothetical test case in about 4 minutes compared to about 58 minutes for IWFM.
Publication type Report
Publication Subtype Other Government Series
Title Comparison of simulations of land-use specific water demand and irrigation water supply by MF-FMP and IWFM
Series title Technical Information Record
Series number TIR-2
Year Published 2011
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) California Water Science Center
Description xii, 68 p.
Country United States
Google Analytic Metrics Metrics page
Additional publication details