thumbnail

Characterizing regional soil mineral composition using spectroscopyand geostatistics

Remote Sensing of Environment

By:
, , , ,
DOI: 10.1016/j.rse.2013.08.018

Links

Abstract

This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Characterizing regional soil mineral composition using spectroscopyand geostatistics
Series title:
Remote Sensing of Environment
DOI:
10.1016/j.rse.2013.08.018
Volume
139
Issue:
December 2013
Year Published:
2013
Language:
English
Publisher:
Elsevier
Contributing office(s):
Crustal Geophysics and Geochemistry Science Center
Description:
15 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
415
Last page:
429
Number of Pages:
15