thumbnail

Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment

Plant and Soil

By:
, , ,
DOI: 10.1007/s11104-013-1803-0

Links

Abstract

Background and aims: We sought to understand the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site. Methods: Saltcedar leaf-level transpiration (EL), LAI, and stomatal conductance (GS) were measured over a growing season (June–September) with Granier and stem heat balance sensors and were compared to those for saltcedar at the non-stress site determined in a previous study. Transpiration on a ground-area basis (EG) was calculated as EL × LAI. Environmental factors were regressed against hourly and daily EL and GS at each site to determine the main factors controlling water use at each site. Results: At the stress site, mean EG over the summer was only 30 % of potential evapotranspiration (ETo). GS and EG peaked between 8 and 9 am then decreased over the daylight hours. Daytime GS was negatively correlated with vapor pressure deficit (VPD) (P < 0.05). By contrast, EG at the non-stress site tracked the daily radiation curve, was positively correlated with VPD and was nearly equal to ETo on a daily basis. Depth to groundwater increased over the growing season at both sites and resulted in decreasing EG but could not explain the difference between sites. Both sites had high soil moisture levels throughout the vadose zone with high calculated unsaturated conductivity. However, salinity in the aquifer and vadose zone was three times higher at the stress site than at the non-stress site and could explain differences in plant EG and GS. Conclusions: Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.

Geospatial Extents

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment
Series title:
Plant and Soil
DOI:
10.1007/s11104-013-1803-0
Volume
371
Issue:
1-2
Year Published:
2013
Language:
English
Publisher:
Springer
Contributing office(s):
Southwest Biological Science Center
Description:
23 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
655
Last page:
672
Number of Pages:
23
Country:
United States
Other Geospatial:
Colorado River