thumbnail

Low-field nuclear magnetic resonance characterization of organic content in shales

By:
, , , , and

Links

Abstract

Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons.


LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.

Additional Publication Details

Publication type:
Conference Paper
Publication Subtype:
Conference Paper
Title:
Low-field nuclear magnetic resonance characterization of organic content in shales
Year Published:
2013
Language:
English
Publisher:
Society of Core Analysts
Contributing office(s):
Central Energy Resources Science Center
Description:
12 p.
Larger Work Type:
Book
Larger Work Subtype:
Conference publication
Larger Work Title:
Proceedings: International Symposium of the Society of Core Analysts
Number of Pages:
12