thumbnail

Effect of light on biodegradation of Estrone, 17β-estradiol, and 17α-ethinylestradiol in stream sediment

Journal of the American Water Resources Association

By:
,
DOI: 10.1111/jawr.12157

Links

Abstract

Biodegradation of [A-ring 14C] Estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) to 14CO2 was investigated under light and dark conditions in microcosms containing epilithon or sediment collected from Boulder Creek, Colorado. Mineralization of the estrogen A-ring was observed in all sediment treatments, but not epilithon treatments. No difference in net mineralization between light and dark treatments was observed for 14C-E2. Net mineralization of 14C-E1 and 14C-EE2 was enhanced in light treatments. Extents of 14CO2 accumulation and rates of mineralization were significantly greater for E2 than E1 under dark conditions, but were comparable under light conditions. These results indicate substantial differences in the uptake and metabolism of E1 and E2 in the environment and suggest biorecalcitrance of E1 relative to E2 in light-limited environments. The extent of 14CO2 accumulation and rate of mineralization for EE2 in dark treatments were less than half of that observed for E2 and generally lower than for E1, consistent with previous reports of EE2 biorecalcitrance. However, 14CO2 accumulation and rates of mineralization were comparable for EE2, E2, and E1 under light conditions. These results indicate photoactivation and/or phototransformation/photodegradation processes can substantially enhance heterotrophic biodegradation of estrogens in sunlit environments and may play an important role in estrogen transport and attenuation.

Geospatial Extents

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Effect of light on biodegradation of Estrone, 17β-estradiol, and 17α-ethinylestradiol in stream sediment
Series title:
Journal of the American Water Resources Association
DOI:
10.1111/jawr.12157
Volume
50
Issue:
2
Year Published:
2014
Language:
English
Publisher:
American Water Resources Association
Publisher location:
Herndon, VA
Contributing office(s):
South Carolina Water Science Center
Description:
9 p.
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
334
Last page:
342
Number of Pages:
9
Country:
United States
State:
Colorado
City:
Boulder
Other Geospatial:
Boulder Creek