Modeling the human invader in the United States

Journal of Applied Remote Sensing
By: , and 

Links

Abstract

Modern biogeographers recognize that humans are seen as constituents of ecosystems, drivers of significant change, and perhaps, the most invasive species on earth. We found it instructive to model humans as invasive organisms with the same environmental factors. We present a preliminary model of the spread of modern humans in the conterminous United States between 1992 and 2001 based on a subset of National Land Cover Data (NLCD), a time series LANDSAT product. We relied on the commonly used Maxent model, a species-environmental matching model, to map urbanization. Results: Urban areas represented 5.1% of the lower 48 states in 2001, an increase of 7.5% (18,112 km2) in the nine year period. At this rate, an area the size of Massachusetts is converted to urban land use every ten years. We used accepted models commonly used for mapping plant and animal distributions and found that climatic and environmental factors can strongly predict our spread (i.e., the conversion of forests, shrub/grass, and wetland areas into urban areas), with a 92.5% success rate (Area Under the Curve). Adding a roads layer in the model improved predictions to a 95.5% success rate. 8.8% of the 1-km2> cells in the conterminous U.S. now have a major road in them. In 2001, 0.8% of 1-km2 > cells in the U.S. had an urbanness value of > 800, (>89% of a 1-km2> cell is urban), while we predict that 24.5% of 1-km2> cells in the conterminous U.S. will be > 800 eventually. Main conclusion: Humans have a highly predictable pattern of urbanization based on climatic and topographic variables. Conservation strategies may benefit from that predictability.
Publication type Article
Publication Subtype Journal Article
Title Modeling the human invader in the United States
Series title Journal of Applied Remote Sensing
DOI 10.1117/1.3357386
Volume 4
Issue 1
Year Published 2010
Language English
Publisher Society of Photo-optical Instrumentation Engineers
Publisher location Bellingham, WA
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description Article 043509
Google Analytic Metrics Metrics page
Additional publication details