Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

Ecological Applications
By: , and 

Links

Abstract

Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

Publication type Article
Publication Subtype Journal Article
Title Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change
Series title Ecological Applications
DOI 10.1890/15-0925
Volume 26
Issue 4
Year Published 2016
Language English
Publisher Ecological Society of America
Contributing office(s) Western Ecological Research Center
Description 5 p.
First page 1223
Last page 1237
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details