Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen

Biogeochemistry
By: , and 

Links

Abstract

Sediment (0.5 mm–2.0 mm grain size) was incubated in nylon bags (200 μm mesh) below the water table in the channel and in two transects of shallow wells perpendicular to the banks (to 18 m) of a third-order stream during August, 1987. One transect of wells drained steep old-growth forest, and the other a steep 23 year-old clear-cut partially regenerated in alder. At approximately 6-week intervals between October, 1987, and June, 1988, bags were retrieved. Total exchangeable ammonium was determined on sediment, and dissolved oxygen, nitrate and ammonium were determined in stream and well water. Exchangeable ammonium ranged from 10 μeq/100 g of sediment in the stream where nitrification potential and subsurface exchange with stream water were high, to 115 μeq/100 g sediment 18 m inland where channel water-groundwater mixing and nitrification potential were both low. Sorbed ammonium was highest during summer/autumn base flow and lowest during winter storm flow. Both channel and well water contained measurable dissolved oxygen at all times. Ammonium concentration was typically < 10 μg-N/L in channel water, increased with distance inland, but did not exceed 365 μg-N/L at any site. Nitrate concentration was typically higher in well water than channel water. Nitrate levels increased dramatically in wells at the base of the clear-cut following the onset of autumn rains. The results indicate a potential for temporary storage of ammonium on riparian sediments which may influence biotic nitrogen cycling, and alter the timing and form of dissolved inorganic nitrogen transport from the watershed.

Publication type Article
Publication Subtype Journal Article
Title Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen
Series title Biogeochemistry
DOI 10.1007/BF02182880
Volume 26
Issue 2
Year Published 1994
Language English
Publisher Springer
Contributing office(s) Toxic Substances Hydrology Program
Description 17 p.
First page 67
Last page 83
Google Analytic Metrics Metrics page
Additional publication details