Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho

Journal of Environmental Management
By:

Links

Abstract

The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows.

These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates.

The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one- to two-orders-of-magnitude larger than seepage rates from the ponds and lake.

The depth-integrated vertical hydraulic conductivity (Kv) for sediment underlying the ponds and lake was the primary control of seepage rates. The Kv's were 30 and 34 m/d for Big Pond, 14 and 18 m/d for Toomey Pond, 8 and 10 m/d for Two-way Pond, and 47 m/d for the north arm of Sandhole Lake.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho
Series title Journal of Environmental Management
DOI 10.1016/j.jenvman.2017.02.063
Volume 203
Issue 1
Year Published 2017
Language English
Publisher Elsevier
Contributing office(s) Idaho Water Science Center
Description 14 p.
First page 578
Last page 591
Country United States
State Idaho
Other Geospatial Camas National Wildlife Refuge
Google Analytic Metrics Metrics page
Additional publication details