Potential paths for male-mediated gene flow to and from an isolated grizzly bear population

Ecosphere
By: , and 

Links

Abstract

For several decades, grizzly bear populations in the Greater Yellowstone Ecosystem (GYE) and the Northern Continental Divide Ecosystem (NCDE) have increased in numbers and range extent. The GYE population remains isolated and although effective population size has increased since the early 1980s, genetic connectivity between these populations remains a long-term management goal. With only ~110 km distance separating current estimates of occupied range for these populations, the potential for gene flow is likely greater now than it has been for many decades. We sought to delineate potential paths that would provide the opportunity for male-mediated gene flow between the two populations. We first developed step-selection functions to generate conductance layers using ecological, physical, and anthropogenic landscape features associated with non-stationary GPS locations of 124 male grizzly bears (199 bear-years). We then used a randomized shortest path (RSP) algorithm to estimate the average number of net passages for all grid cells in the study region, when moving from an origin to a destination node. Given habitat characteristics that were the basis for the conductance layer, movements follow certain grid cell sequences more than others and the resulting RSP values thus provide a measure of movement potential. Repeating this process for 100 pairs of random origin and destination nodes, we identified paths for three levels of random deviation (θ) from the least-cost path. We observed broad-scale concordance between model predictions for paths originating in the NCDE and those originating in the GYE for all three levels of movement exploration. Model predictions indicated that male grizzly bear movement between the ecosystems could involve a variety of routes, and verified observations of grizzly bears outside occupied range supported this finding. Where landscape features concentrated paths into corridors (e.g., because of anthropogenic influence), they typically followed neighboring mountain ranges, of which several could serve as pivotal stepping stones. The RSP layers provide detailed, spatially explicit information for land managers and organizations working with land owners to identify and prioritize conservation measures that maintain or enhance the integrity of potential areas conducive to male grizzly bear dispersal.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Potential paths for male-mediated gene flow to and from an isolated grizzly bear population
Series title Ecosphere
DOI 10.1002/ecs2.1969
Volume 8
Issue 10
Year Published 2017
Language English
Publisher Ecological Society of America
Contributing office(s) Northern Rocky Mountain Science Center
Description e01969; 19 p.
First page 1
Last page 19
Country United States
State Montana
Other Geospatial Greater Yellowstone Ecosystem, Northern Conti-nental Divide Ecosystem
Google Analytic Metrics Metrics page
Additional publication details