Impact of wildfire and slope aspect on soil temperature in a mountainous environment

Vadose Zone Journal
By:

Links

Abstract

Soil temperature changes after landscape disturbance impact hydrology, ecology, and geomorphology. This study used field measurements to examine wildfire and aspect effects on soil temperatures. Combustion of the litter and duff layers on north-facing slopes removed pre-fire aspect-driven soil temperature controls.

Wildfire is one of the most significant disturbances in mountainous landscapes and can affect soil temperature, which can in turn impact ecologic and geomorphologic processes. This study measured the temperature in near-surface soil (i.e., top 30 cm) during the first summer after a wildfire. In mountainous environments, aspect can also affect soil temperature, so north- vs. south-facing aspects were compared using a fully factorial experimental design to explore the effects of both wildfire and aspect on soil temperature. The data showed major wildfire impacts on soil temperatures on north-facing aspects (unburned ∼4–5°C cooler, on average) but little impact on south-facing aspects. Differences in soil temperatures between north-facing and south-facing unburned aspects (north ∼5°C cooler, on average) were also observed. The data led to the conclusion that, for this field site during the summer period, the forest canopy and litter and duff layers on north-facing slopes (when unburned) substantially decreased mean soil temperatures and temperature variability. The sparse trees on south-facing slopes caused little to no difference in soil temperatures following wildfire in south-facing soils for unburned compared with burned conditions. The results indicate that wildfire can reduce or even remove aspect impacts on soil temperature by combusting the forest canopy and litter and duff layers, which then homogenizes soil temperatures across the landscape.

Publication type Article
Publication Subtype Journal Article
Title Impact of wildfire and slope aspect on soil temperature in a mountainous environment
Series title Vadose Zone Journal
DOI 10.2136/vzj2012.0017
Volume 11
Issue 3
Year Published 2012
Language English
Publisher ACSESS
Contributing office(s) National Research Program - Central Branch
Google Analytic Metrics Metrics page
Additional publication details