The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

Geophysical Research Letters
By: , and 

Links

Abstract

During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

Publication type Article
Publication Subtype Journal Article
Title The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex
Series title Geophysical Research Letters
DOI 10.1002/2017GL076690
Volume 45
Issue 8
Year Published 2018
Language English
Publisher American Geophysical Union
Contributing office(s) Geologic Hazards Science Center
Description 9 p.
First page 3436
Last page 3444
Other Geospatial Great Lakes
Google Analytic Metrics Metrics page
Additional publication details