Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems

Remote Sensing
By: , and 

Links

Abstract

Drylands are the habitat and source of livelihood for about two fifths of the world’s population and are highly susceptible to climate and anthropogenic change. To understand the vulnerability of drylands to changing environmental conditions, land managers need to effectively monitor rates of past change and remote sensing offers a cost-effective means to assess and manage these vast landscapes. Here, we present a novel approach to accurately monitor land-surface phenology in drylands of the Western United States using a regression tree modeling framework that combined information collected by the Operational Land Imager (OLI) onboard Landsat 8 and the Multispectral Instrument (MSI) onboard Sentinel-2. This highly-automatable approach allowed us to precisely characterize seasonal variations in spectral vegetation indices with substantial agreement between observed and predicted values (R2 = 0.98; Mean Absolute Error = 0.01). Derived phenology curves agreed with independent eMODIS phenological signatures of major land cover types (average r-value = 0.86), cheatgrass cover (average r-value = 0.96), and growing season proxies for vegetation productivity (R2 = 0.88), although a systematic bias towards earlier maturity and senescence indicates enhanced monitoring capabilities associated with the use of harmonized Landsat-8 Sentinel-2 data. Overall, our results demonstrate that observations made by the MSI and OLI can be used in conjunction to accurately characterize land-surface phenology and exclusion of imagery from either sensor drastically reduces our ability to monitor dryland environments. Given the declines in MODIS performance and forthcoming decommission with no equivalent replacement planned, data fusion approaches that integrate observations from multispectral sensors will be needed to effectively monitor dryland ecosystems. While the synthetic image stacks are expected to be locally useful, the technical approach can serve a wide variety of applications such as invasive species and drought monitoring, habitat mapping, production of phenology metrics, and land-cover change modeling.

Publication type Article
Publication Subtype Journal Article
Title Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems
Series title Remote Sensing
DOI 10.3390/rs10050791
Volume 10
Issue 5
Year Published 2018
Language English
Publisher MDPI
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description 15 p.
Country United States
Google Analytic Metrics Metrics page
Additional publication details