thumbnail

Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons

Bulletin 2174-B

By:

Links

Abstract

Seventy-five shales from the Los Angeles, Ventura, and Southern San Joaquin Valley Basins were extracted and analyzed. Samples were chosen on the basis of ROCK-EVAL analyses of a much larger sample base. The samples ranged in burial temperatures from 40 ? to 220 ? C, and contained hydrogen-poor to hydrogen-rich organic matter (OM), based on OM visual typing and a correlation of elemental kerogen hydrogen to carbon ratios with ROCK-EVAL hydrogen indices. By extractable bitumen measurements, rocks with hydrogen- poor OM in the Los Angeles Basin began mainstage hydrocarbon (HC) generation by 90 ? C. The HC concentrations maximized by 165 ? C, and beyond 165 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all began decreasing to low values reached by 220 ? C, where HC generation was largely complete. Rocks with hydrogen-poor OM in the Southern San Joaquin Valley Basin commenced mainstage HC generation at 135 ? C and HC concentrations maximized by 180 ? C. Above 180 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all decreased to low values reached by 214 ? C, again the process of HC generation being largely complete. In both cases, bell-shaped HC-generation curves were present versus depth (burial temperature). Mainstage HC generation had not yet begun in Ventura Basin rocks with hydrogen-poor OM by 140 ? C. The apparent lower temperature for initiation of mainstage generation in the Los Angeles Basin is attributed to very recent cooling in that basin from meteoric-water flow. Thus, HC generation there most probably occurred at higher burial temperatures. In contrast, mainstage HC generation, and all aspects of organic metamorphism, were strongly suppressed in rocks with hydrogen-rich OM at temperatures as high as 198 ? C. For example, shales from the Wilmington field (Los Angeles Basin) from 180 ? to 198 ? C retained ROCK-EVAL hydrogen indices of 550- 700 and had saturated-HC coefficients of only 4-15 mg/g organic carbon. The rocks with hydrogen-rich OM were subjected to the same burial conditions as the rocks with hydrogenpoor OM. We attribute this suppression of organic metamorphism in this study primarily to much stronger bonds in the hydrogen-rich OM compared to the bonds in hydrogen-poor OM. Trends in bitumen compositions (qualitative characteristics) versus burial temperature were also very different for rocks with hydrogen-poor OM compared to that in rocks with hydrogen- rich OM. This observation demonstrated that the two OM types also had significantly different reaction pathways, in addition to different reaction kinetics. Strong exploration implications arise from these observations. Above 40?C, but before mainstage HC generation, a lowtemperature (pre-mainstage) HC generation occurred in all rocks, and all OM types, studied. This low-temperature generation resulted in significant qualitative changes in the bitumen and HCS (hydrocarbons) from rocks of all OM types, especially in rocks with hydrogen-rich OM, from 40 ? to 70 ? C. This, and previous studies, document that very high carbon-normalized concentrations of indigenous bitumen and HCS occur in late Neogene immature rocks of any OM type in all southern California basins. This characteristic is attributed to the low-temperature generation occurring in both sulfur-poor and sulfur-rich kerogens, which originally had unusually high concentrations of weak (15-40 Kcal/mole) bonds. These observations and considerations have marked relevance to exploration regarding the possible formation of commercial oil deposits at immature ranks in these basins. Other significant geochemical observations also result from this study.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons
Series title:
Bulletin
Series number:
2174
Chapter:
B
Edition:
Version 1.0
Year Published:
2000
Language:
ENGLISH
Publisher:
U.S. Department of the Interior, U.S. Geological Survey,
Description:
33 p.