thumbnail

Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

Biological Science Report 2001-0001

By:
, , , , , , and

Links

Abstract

Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream water; (3) to develop site-specific thresholds for toxicity of Zn and Cu in stream water; and (4) to develop models of the contributions of Cu and Zn to toxicity of stream water, which may be used to characterize toxicity before and after planned remediation efforts. We evaluated the toxicity of metal-contaminated sediments by conducting sediment toxicity tests with two species of benthic invertebrates, the midge, Chironomus tentans. and the amphipod, Hyalella azteca. Laboratory toxicity tests with both taxa, exposed to fine stream-bed sediments collected in September 1997, showed some evidence of sediment toxicity, as survival of midge larvae in sediments from Cement Creek (C48) and lower Mineral Creek (M34), and growth of amphipods in sediments from these sites and three Animas River sites (A68, Animas at Silverton; A72, Animas below Silverton, and A73, Animas at Elk Park) were significantly reduced compared to a reference site, South Mineral Creek (SMC) . Amphipods were also exposed to site water and fine stream-bed sediment, separately and in combination, during the late summer low flow period (August-September) of 1998. In these studies, stream water, with no sediment present, from all five sites tested (same sites as above, except C48) caused 90% to 100% mortality of amphipods. In contrast, significant reductions in survival of amphipods occurred at two sites (A72 and SMC) in exposures with field-collected sediment plus stream water, and at only one site (A72) in exposures with sediments and clean overlying water. Concentrations of Zn, Pb, Cu, and Cd were high in both sediment and pore water (interstitial water) from most sites tested, but greatest sediment toxicity was apparently associated with greater concentrations of Fe and/or Al in sediments. These results suggest that fine stream-bed sediments of the more contaminated stream reaches of the upper Animas River watershed are toxic to benthic invertebrates, but that these impacts are less serious than tox

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
Federal Government Series
Title:
Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado
Series title:
Biological Science Report
Series number:
2001-0001
Edition:
-
Year Published:
2001
Language:
ENGLISH
Publisher:
U.S. Fish and Wildlife Service
Contributing office(s):
Columbia Environmental Research Center
Description:
v, 72 p.