thumbnail

Continuous Temperature and Water-Level Data Collected for a Heat Tracer Study on a Selected Reach of Tri-State Canal, Western Nebraska, 2007

Data Series 381

Prepared in cooperation with the North Platte Natural Resources District
By:

Links

Abstract

The water supply in parts of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or over appropriated by the Nebraska Department of Natural Resources. Recent legislation (LB 962) requires the North Platte Natural Resources District and the Nebraska Department of Natural Resources to develop an Integrated Management Plan to balance ground- and surface-water supply and demand within the North Platte Natural Resources District. For a ground-water-flow model to accurately simulate existing or future ground-water and surface-water conditions, accurate estimates of specific input variables such as streambed conductance or canal-seepage rates are required. As of 2008, the values input into ground-water models were estimated on the basis of interpreted lithology from test holes and geophysical surveys. Often, contrasts of several orders of magnitude exist for streambed conductance among the various sediment textures present locally, and thin, near-surface layers of fine sediment can clog the streambed, substantially reducing conductance. To accurately quantify the rates of leakage from irrigation canals and estimate ground-water recharge, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, collected continuous temperature and water-level data to use heat as a tracer for a selected reach of Tri-State Canal west of Scottsbluff, Nebraska. Continuous records of subsurface temperature, ground-water level, canal stage, and water temperature, and sediment core data are presented in this report. Subsurface temperature was monitored at four vertical sensor arrays of thermocouples installed at various depths beneath the canal bed from March through September 2007. Canal stage and water temperature were measured from June to September 2007. Ground-water level was recorded continuously in an observation well drilled near the subsurface temperature monitoring site. These data sets were collected for use as inputs for a computer model to estimate the vertical hydraulic conductivity. Before the initiation of flow, diurnal variations in subsurface temperature occurred because of daytime heating and nighttime cooling of bed sediment. Flow in Tri-State Canal was first detected on June 16 at the monitoring site as a disruption in the temperature signal in the shallowest thermocouple in all four vertical sensor arrays. This disruption in the temperature pattern occurred in deeper thermocouples at slightly later times during the rapid infiltration of canal water. The ground-water level began to rise approximately 23 hours after flow was first detected at the monitoring site. Canal stage rose for 7 days until the maximum flow capacity of the canal was approached on June 23, 2007. Measured water temperatures ranged from 18 to 25 degrees Celsius (C) while the canal was flowing near maximum capacity. Small diurnal variations of 1.0 to 1.5 degrees C in water temperature were recorded during this time. Measured ground-water levels rose constantly during the entire irrigation season until levels peaked on September 3, 2007, 3 days after diversions to Tri-State Canal ceased.

Study Area

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Continuous Temperature and Water-Level Data Collected for a Heat Tracer Study on a Selected Reach of Tri-State Canal, Western Nebraska, 2007
Series title:
Data Series
Series number:
381
Edition:
Version 1.0
Year Published:
2008
Language:
ENGLISH
Publisher:
Geological Survey (U.S.)
Contributing office(s):
Nebraska Water Science Center
Description:
iv, 23 p.
Time Range Start:
2007-06-01
Time Range End:
2007-09-30