Controlled photomosaic map of Callisto JC 15M CMN

IMAP 2770




This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the cameras of the Voyager 1 and 2 spacecraft. Mercator and Polar Stereographic projections used for this map of Callisto are based on a sphere having a radius of 2,409.3 km. The scale is 1:8,388,000 at ±56° latitude for both projections. Longitude increases to the west in accordance with the International Astronomical Union (1971) (Seidelmann and others, 2002). The geometric control network was computed at the RAND Corporation using RAND's most recent solution as of April 1999 (Davies and Katayama, 1981; Davies and others, 1998). This process involved selecting control points on the individual images, making pixel measurements of their locations, using reseau locations to correct for geometric distortions, and converting the measurements to millimeters in the focal plane. These data are combined with the camera focal lengths and navigation solutions as input to photogrammetric triangulation software that solves for the best-fit sphere, the coordinates of the control points, the three orientation angles of the camera at each exposure (right ascension, declination, and twist), and an angle (W0) which defines the orientation of Callisto in space. W0-in this solution 259.51°-is the angle along the equator to the east, between the 0° meridian and the equator's intersection with the celestial equator at the standard epoch J2000.0. This solution places the crater Saga at its defined longitude of 326° west (Seidelmann and others, 2002). This global map base uses the best image quality and moderate resolution coverage supplied by Galileo SSI and Voyager 1 and 2 (Batson, 1987; Becker and others, 1998; Becker and others, 1999; Becker and others, 2001). The digital map was produced using Integrated Software for Imagers and Spectrometers (ISIS) (Eliason, 1997; Gaddis and others, 1997; Torson and Becker, 1997). The individual images were radiometrically calibrated and photometrically normalized using a Lunar-Lambert function with empirically derived values (McEwen, 1991; Kirk and others, 2000). A linear correction based on the statistics of all overlapping areas was then applied to minimize image brightness variations. The image data were selected on the basis of overall image quality, reasonable original input resolution (from 20 km/pixel for gap fill to as much as 150 m/pixel), and availability of moderate emission/incidence angles for topography. Although consistency was achieved where possible, different filters were included for global image coverage as necessary: clear for Voyager 1 and 2; clear and green (559 nm) for Galileo SSI. Individual images were projected to a Sinusoidal Equal-Area projection at an image resolution of 1.0 kilometer/pixel. The final constructed Sinusoidal projection mosaic was then reprojected to the Mercator and Polar Stereographic projections included on this sheet. The final mosaic was enhanced using commercial software. Names on this sheet are approved by the International Astronomical Union. Names have been applied for features clearly visible at the scale of this map; for a complete list of nomenclature for Callisto, please see the Gazeteer of Planetary Nomenclature. Font color was chosen only for readability.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Controlled photomosaic map of Callisto JC 15M CMN
Series title:
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Astrogeology Science Center
1 Plate: 46.00 x 40.00 inches; Purchasing information
Additional Online Files (Y/N):