Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

Open-File Report 2001-258

, , ,



strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph iron spring yielded 39% of the discharge and 54%, 73%, and 87% of the SO4, Al, and Fe loads; but only 4% of the total Cu and 30% of the total Zn loads in Prospect Gulch. Base flow from the Prospect Gulch sub-basin contributes about 4.8 percent of the total discharge at the mouth of Cement Creek; compared with sampled instream loads of 1.8%, 8.8%, 15.9%, 28%, and 8.6% for SO4, Al, Fe, Cu and Zn, respectively. Water-shed scale remediation efforts targeted at reducing loads of SO4, Al, and Fe at inactive mine sites are likely to fail because the major sources of these constituents in Prospect Gulch are predominantly discharged from natural sources. Remediation goals aimed at reducing acidity and loads of Cu and other base metals, may succeed, however, because changes in pH and loads are disproportionately greater than increases in discharge over the same reach, and a substantial fraction of the metal loading is from mining-impacted reaches. Whether remediation of abandoned mines in Prospect Gulch can be successful depends on how goals are defined?that is, whether the objective is to reduce loads of SO4, Al, and Fe; or whether loads of Cu and other base metals and pH are targeted.

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado
Series title:
Open-File Report
Series number:
Version 1.1
Year Published:
36 p.