thumbnail

Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park during June-September, 1995

Open-File Report 2002-344

By:
, , , , and

Links

Abstract

Each year at Norris Geyser Basin, generally in August or September, a widespread hydrothermal 'disturbance' occurs that is characterized by simultaneous changes in the discharge characteristics of many springs, particularly in the Back Basin. During the summer season of 1995, water samples from eight widely distributed hot springs and geysers at Norris were collected each week and analyzed to determine whether chemical and isotopic changes also occurred in the thermal waters at the time of the disturbance. In addition, Beryl Spring in Gibbon Canyon, 5.8 km southwest of Norris Geyser Basin, was included in the monitoring program. Waters discharged by four of the monitored hot springs and geysers appear to issue from relatively deep reservoirs where temperatures are at least 270 C and possibly higher than 300 C. At the time of, and for several days after, the onset of the 1995 disturbance, the normally neutral-chloride waters discharged by these four features all picked up an acid-sulfate component and became isotopically heavier. The acid-sulfate component appears to be similar in composition to some waters discharged in 100 Spring Plain that issue from subsurface regions where temperatures are in the range 170-210 C. However, the two monitored springs that discharge acid-chloride-sulfate waters in the 100 Spring Plain region did not show any significant chemical or isotopic response to the annual disturbance. Beryl Spring, and two neutral-chloride hot springs at Norris that appear to draw their water from reservoirs where temperatures are 250 C or less, also did not show any significant chemical or isotopic response to the annual disturbance. After the start of the annual disturbance, chloride concentrations in water sampled from Double Bulger Geyser in the Back Basin increased from about 800 ppm to about 1500 ppm, nearly twice as high as any previously reported chloride concentration in a thermal water at Yellowstone. The isotopic composition of that water precludes an origin of the high chloride by evaporation at atmospheric pressure. One way to account for the unique chemical and isotopic composition of this highly concentrated wateris by recirculation of water that had gone through one cycle of adiabatic cooling during upflow (decompressional boiling) back down into the hydrothermal system, where it is reheated to greater than 220 C. This previously boiled water then undergoes additional cycles of decompressional boiling during subsequent upflow. Another way the unique chemical and isotopic composition of Double Bulger water might evolve is by excess boiling in the formation that results from a decrease in fluid pressure within the channels of upflow. The annual disturbance at Norris Geyser Basin generally appears to be triggered by a cyclic up and down movement of the boilingpoint curve within the hydrothermal system in response to changes in the potentiometric surface of the cold water that is adjacent to, and interconnected with, that hydrothermal system. Annual disturbance phenomena that are easily recognized at Norris Geyser Basin may not be easily recognized elsewhere in Yellowstone National Park because (1) the neutral-chloride waters at Norris ascend directly from higher-temperature and higherpressure reservoirs (270 to >300 C at Norris compared to 180-215C at Upper and Lower Geyser Basins) that are capable of producing massive amounts of high-pressure steam, and (2) the clay that makes hot spring and geyser waters become turbid at Norris, heralding the start of the disturbance, comes from acid altered rocks that are widely distributed at intermediate depths at Norris, and that are rare in other geyser basins.

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park during June-September, 1995
Series title:
Open-File Report
Series number:
2002-344
Year Published:
2002
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Geology, Minerals, Energy and Geophysics Science Center
Description:
49 p.
Number of Pages:
50
Country:
United States
State:
Wyoming
Other Geospatial:
Yellowstone National Park