Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

Open-File Report 2004-1269

, , , , , , , and



The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of the 2003 damage was caused by lateral spreading in two separate areas, one near Norswing Drive and the other near Juanita Avenue. The areas coincided with areas with the highest liquefaction potential found in Oceano. Areas with site amplification conditions similar to those in Oceano are particularly vulnerable to earthquakes. Site amplification may cause shaking from distant earthquakes, which normally would not cause damage, to increase locally to damaging levels. The vulnerability in Oceano is compounded by the widespread distribution of highly liquefiable soils that will reliquefy when ground shaking is amplified as it was during the San Simeon earthquake. The experience in Oceano can be expected to repeat because the region has many active faults capable of generating large earthquakes. In addition, liquefaction and lateral spreading will be more extensive for moderate-size earthquakes that are closer to Oceano than was the 2003 San Simeon earthquake. Site amplification and liquefaction can be mitigated. Shaking is typically mitigated in California by adopting and enforcing up-to-date building codes. Although not a guarantee of safety, application of these codes ensures that the best practice is used in construction. Building codes, however, do not always require the upgrading of older structures to new code requirements. Consequently, many older structures may not be as resistant to earthquake shaking as new ones. For older structures, retrofitting is required to bring them up to code. Seismic provisions in codes also generally do not apply to nonstructural elements such as drywall, heating systems, and shelving. Frequently, nonstructural damage dominates the earthquake loss. Mitigation of potential liquefaction in Oceano presently is voluntary for existing buildings, but required by San Luis Obispo County for new construction. Multiple mitigation procedures are available to individual property owners. These procedures typically involve either

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake
Series title:
Open-File Report
Series number:
Year Published:
51 p.