Potentiometric surface of the Upper Floridan aquifer, west-central Florida, May 2005

Open-File Report 2006-1009




The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is a highly productive aquifer and supplies more than 10 times the amount of water pumped from either the surficial aquifer system or the intermediate aquifer system in most of the study area (Duerr and others, 1988). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2005. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in a tightly cased well that taps a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 67.27 inches for west-central Florida (from June 2004 through May 2005) was 14.20 inches above the historical cumulative average of 53.07 inches (Southwest Florida Water Management District (SWFWMD), 2005). The above average precipitation is attributed to the active hurrican season for Florida in 2004. Historical cumulative averages are calculated from regional rainfall summary reports (1915 to the most recent completed calendar year) and are updated monthly by the SWFWMD. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the SWFWMD, is part of a semiannual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the USGS during May 23-27, 2005. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the SWFWMD boundary by the USGS office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. Water levels in about 19 percent of the wells measured in May 2005 were lower than the May 2004 water levels (Blanchard and others, 2004). Data from 409 wells indicate that the May 2005 water levels ranged from about 5 feet below to about 18 feet above the May 2004 water levels (fig. 1). The largest water-level declines occurred in southwestern Hernando County, northeastern Hillsborough County, and parts of Hillsborough, Sumter, and Sarasota Counties. The largest water-level rises occurred in southeastern Hillsborough County, eastern Manatee County, and western Hardee County (fig. 1). Water levels in about 95 percent of the wells measured in May 2005 were lower than the September 2004 water levels (Blanchard and Seidenfeld, 2005). Data from 405 wells indicate that the May 2005 water levels ranged from about 22 feet below to 14 feet above the September 2004 water levels. The largest water-level decline was in east-central Manatee County and the largest water-level rise was in central Sarasota County.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Potentiometric surface of the Upper Floridan aquifer, west-central Florida, May 2005
Series title:
Open-File Report
Series number:
Year Published:
Contributing office(s):
Florida Integrated Science Center
1 map sheet, 30 x 34 in.
Time Range Start:
Time Range End:
UTM Zone 17 NAD 27