thumbnail

Surface-Water Quantity and Quality of the Upper Milwaukee River, Cedar Creek, and Root River Basins, Wisconsin, 2004

Open-File Report 2006-1121

By:

Links

Abstract

The U.S. Geological Survey, in cooperation with the Southeastern Wisconsin Regional Planning Commission (SEWRPC), collected discharge and water-quality data at nine sites in previously monitored areas of the upper Milwaukee River, Cedar Creek, and Root River Basins, in Wisconsin from May 1 through November 15, 2004. The data were collected for calibration of hydrological models that will be used to simulate how various management strategies will affect the water quality of streams. The data also will support SEWRPC and Milwaukee Metropolitan Sewerage District (MMSD) managers in development of the SEWRPC Regional Water Quality Management Plan and the MMSD 2020 Facilities Plan. These management plans will provide a scientific basis for future management decisions regarding development and maintenance of public and private waste-disposal systems. In May 2004, parts of the study area received over 13 inches of precipitation (3.06 inches is normal). In June 2004, most of the study area received between 7 and 11 inches of rainfall (3.56 inches is normal). This excessive rainfall caused flooding throughout the study area and resultant high discharges were measured at all nine monitoring sites. For example, the mean daily discharge recorded at the Cedar Creek site on May 27, 2004, was 2,120 cubic feet per second. This discharge ranked ninth of the largest 10 mean daily discharges in the 75-year record, and was the highest discharge recorded since March 30, 1960. Discharge records from continuous monitoring on the Root River Canal near Franklin since October 1, 1963, indicated that the discharge recorded on May 23, 2004, ranked second highest on record, and was the highest discharge recorded since March 4, 1974. Water-quality samples were taken during two base-flow events and six storm events at each of the nine sites. Analysis of water-quality data indicated that most concentrations of dissolved oxygen, biological oxygen demand, fecal coliform bacteria, chloride, suspended solids, nitrate plus nitrite nitrogen, ammonia nitrogen, Kjeldahl nitrogen, total phosphorus, dissolved orthophosphorus, total copper, particulate mercury, dissolved mercury, particulate methylmercury, dissolved methylmercury, and total zinc were below U.S. Environmental Protection Agency (USEPA) and State of Wisconsin water-quality standards at all sites, with the exception of dissolved oxygen at the Kewaskum, Farmington, Root River Canal, Root River Racine, and Root River Mouth sites. Each of these sites had from several days to several weeks of daily average dissolved oxygen concentrations below the 5 milligrams per liter State of Wisconsin standard for aquatic life. The lowest dissolved oxygen concentrations were measured at the heavily urbanized Root River Mouth site in downtown Racine, Wisconsin, where elevated concentrations of ammonia may have contributed to oxygen consumption during oxidation of ammonia to nitrate. Additionally, the maximum concentrations of copper in several Root River samples exceeded draft USEPA Ambient Water-Quality Criteria (U.S. Environmental Protection Agency, 2003) for acute toxicity to several species of aquatic organisms. Substantial water-quality changes were not correlated with hydrologic changes at any of the nine sites. Base-flow water-quality was generally indistinguishable from that sampled during storm events. The sparsely developed upper Milwaukee River and Cedar Creek Basins had relatively low ranges of contamination for all laboratory-reported parameters. For all nine sites, the highest reported concentrations of chloride (216 mg/L), total phosphorus (0.627 mg/L), ortho-phosphorus (0.136 mg/L), nitrate plus nitrate (9.32 mg/L), and copper (38 ?g/L) were reported for samples collected at the Root River Canal site. The highest concentrations of fecal coliforms (3,600 colonies per 100 mL) and Escherichia coli (2,300 colonies per 100 mL) were reported in samples collected at Kewaskum. The highest concentrations of s

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Surface-Water Quantity and Quality of the Upper Milwaukee River, Cedar Creek, and Root River Basins, Wisconsin, 2004
Series title:
Open-File Report
Series number:
2006-1121
Edition:
-
Year Published:
2006
Language:
ENGLISH
Contributing office(s):
Wisconsin Water Science Center
Description:
viii, 52 p.; 28 figs.; 14 tables
Number of Pages:
60
Time Range Start:
2004-05-01
Time Range End:
2004-11-15