thumbnail

National Assessment of Shoreline Change Part 3: Historical Shoreline Change and Associated Coastal Land Loss Along Sandy Shorelines of the California Coast

Open-File Report 2006-1219

see also OFRs 2004-1043, 2005-1401
By:
, , , , and

Links

Abstract

Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. In the case of this study, the shoreline being measured is the boundary between the ocean water surface and the sandy beach. This report on the California Coast represents the first of two reports on long-term sandy shoreline change for the western U.S., the second of which will include the coast of the Pacific NW, including Oregon and Washington. A report for the Gulf of Mexico shoreline was completed in 2004 and is available at: http://pubs.usgs.gov/of/2004/1043/. This report summarizes the methods of analysis, interprets the results, provides explanations regarding long-term and short-term trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines digitized from maps, with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1950s-1970s, whereas the lidar shoreline is from 1998-2002. Long-term rates of change are calculated using all four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for only the most recent period (1950s-1970s to lidar shoreline). The rates of change presented in this report represent past conditions and therefore are not intended for predicting future shoreline positions or rates of change. Due to the geomorphology of the California Coast (rocky coastline instead of beach) as well as to data gaps in some areas, this report presents beach erosion rates for 45% of California's 1100 km of coast. The average rate of long-term shoreline change for the State of California was 0.2?0.1 m/yr, an accretional trend. This is based on shoreline change rates averaged from 14,562 individual transects, of which 40% were eroding. Of the transects on which the shoreline was eroding, the long-term erosion rates were generally lowest in Southern California where coastal engineering projects have greatly altered the natural shoreline movement. On a regional scale, long-term accretion rates were either equal to (Central California) or greater than (Northern and Southern California) the long-term erosion rates, yielding the net accretional trend for the entire state. This accretional trend is most likely due to changes in the large volumes of sediment that are added to the system from large rivers and to the impact from coastal engineering and beach nourishment projects. The average rate of short-term shoreline change for the state was erosional. The net short-term rate as averaged along 16,142 transects was -0.2?0.4 m/yr. Of the transects used to measure short-term change, 66% had erosional trends. In addition erosion rates were higher in the short-term period, possibly related to the localized artificial nourishment that occurred over much of the 20th century but that has recently slowed or stopped (Flick, 1993; Wiegel, 1994). Short-term accretion rates were highest in Northern California where the overall magnitudes of shoreline change are systematically higher than in Central and Southern California. The most stable (low erosion and accretion rates) California beaches were most commonly found in Central California. Seawalls and/or riprap revetments have been constructed in all three sections of California, although many of these structures were built to protect houses and infrastructures from the erosion of coastal cliffs and bluffs rather than to protect against long-term beach erosion. California permits shoreline stabilization structures where homes, buildings or other community infrastructure are imminently threatened by erosion. A second California report that is following this publication will include analyses and reports on long-term coastal cliff erosion, as this hazard is of equal or greater concern to coastal communities in many areas along the California Coast.

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
National Assessment of Shoreline Change Part 3: Historical Shoreline Change and Associated Coastal Land Loss Along Sandy Shorelines of the California Coast
Series title:
Open-File Report
Series number:
2006-1219
Edition:
-
Year Published:
2006
Language:
ENGLISH
Publisher:
Geological Survey (U.S.)
Contributing office(s):
Western Coastal and Marine Geology
Description:
v, 72 p.
Additional Online Files(Y/N):
Y